Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Zoonoses Public Health ; 70(5): 393-402, 2023 08.
Article in English | MEDLINE | ID: covidwho-2297270

ABSTRACT

Antimicrobial resistance (AMR) in bacterial pathogens reduces the effectiveness of these drugs in both human and veterinary medicine, making judicious antimicrobial use (AMU) an important strategy for its control. The COVID-19 pandemic modified operations in both human and veterinary healthcare delivery, potentially impacting AMU. The goal of this research is to quantify how antimicrobial drug prescribing practices for companion animals in an academic veterinary hospital changed during the pandemic. A retrospective study was performed using prescribing data for dogs and cats collected from the NC State College of Veterinary Medicine (NCSU-CVM) pharmacy, which included prescriptions from both the specialty referral hospital and primary care services. Records (n = 31,769) for 34 antimicrobial drugs from 2019-2020-before and during the pandemic-related measures at the NCSU-CVM-were compared. The prescribed antimicrobials' importance was categorized using the FDA's Guidance for Industry (GFI #152), classifying drugs according to medical importance in humans. A proportional odds model was used to estimate the probability of more important antimicrobials being administered in patients seen during the pandemic versus before (i.e., critically important vs. highly important vs. important). Rates of AMU per week and per patient visit were also compared. During the pandemic, cumulative antimicrobials prescribed per week were significantly decreased in most services for dogs. Weekly rates for Highly Important antimicrobials were also significantly lower in dogs. For important and critically important antimicrobials, rates per week were significantly decreased in various services overall. Rates of antimicrobial administration per patient visit were significantly increased for Highly Important drugs. Patients in the internal medicine, dermatology, and surgery services received significantly more important antimicrobials during the pandemic than before, while cardiology patients received significantly less. These results suggest that the pandemic significantly impacted prescribing practices of antimicrobials for companion animals in this study.


Subject(s)
Anti-Infective Agents , COVID-19 , Cat Diseases , Dog Diseases , Humans , Cats , Animals , Dogs , Pets , Pandemics , Retrospective Studies , Hospitals, Animal , North Carolina , Dog Diseases/drug therapy , Dog Diseases/epidemiology , COVID-19/veterinary , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/therapeutic use
2.
PLoS One ; 17(9): e0274899, 2022.
Article in English | MEDLINE | ID: covidwho-2054349

ABSTRACT

BACKGROUND: Evidence seems to suggest that the risk of Coronavirus Disease 2019 (COVID-19) might vary across communities due to differences in population characteristics and movement patterns. However, little is known about these differences in the greater St Louis Area of Missouri and yet this information is useful for targeting control efforts. Therefore, the objectives of this study were to investigate (a) geographic disparities of COVID-19 risk and (b) associations between COVID-19 risk and socioeconomic, demographic, movement and chronic disease factors in the Greater St. Louis Area of Missouri, USA. METHODS: Data on COVID-19 incidence and chronic disease hospitalizations were obtained from the Department of Health and Missouri Hospital Association, respectively. Socioeconomic and demographic data were obtained from the 2018 American Community Survey while population mobility data were obtained from the SafeGraph website. Choropleth maps were used to identify geographic disparities of COVID-19 risk and several sociodemographic and chronic disease factors at the ZIP Code Tabulation Area (ZCTA) spatial scale. Global negative binomial and local geographically weighted negative binomial models were used to investigate associations between ZCTA-level COVID-19 risk and socioeconomic, demographic and chronic disease factors. RESULTS: There were geographic disparities found in COVID-19 risk. Risks tended to be higher in ZCTAs with high percentages of the population with a bachelor's degree (p<0.0001) and obesity hospitalizations (p<0.0001). Conversely, risks tended to be lower in ZCTAs with high percentages of the population working in agriculture (p<0.0001). However, the association between agricultural occupation and COVID-19 risk was modified by per capita between ZCTA visits. Areas that had both high per capita between ZCTA visits and high percentages of the population employed in agriculture had high COVID-19 risks. The strength of association between agricultural occupation and COVID-19 risk varied by geographic location. CONCLUSIONS: Geographic disparities of COVID-19 risk exist in the St. Louis area and are associated with sociodemographic factors, population movements, and obesity hospitalization risks. The latter is particularly concerning due to the growing prevalence of obesity and the known immunological impairments among obese individuals. Therefore, future studies need to focus on improving our understanding of the relationships between COVID-19 vaccination efficacy, obesity and waning of immunity among obese individuals so as to better guide vaccination regimens and reduce disparities.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19 Vaccines , Humans , Incidence , Missouri/epidemiology , Obesity , Socioeconomic Factors , United States
3.
BMC Public Health ; 22(1): 321, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1690933

ABSTRACT

BACKGROUND: There is evidence of geographic disparities in COVID-19 hospitalization risks that, if identified, could guide control efforts. Therefore, the objective of this study was to investigate Zip Code Tabulation Area (ZCTA)-level geographic disparities and identify predictors of COVID-19 hospitalization risks in the St. Louis area. METHODS: Hospitalization data for COVID-19 and several chronic diseases were obtained from the Missouri Hospital Association. ZCTA-level data on socioeconomic and demographic factors were obtained from the American Community Survey. Geographic disparities in distribution of COVID-19 age-adjusted hospitalization risks, socioeconomic and demographic factors as well as chronic disease risks were investigated using choropleth maps. Predictors of ZCTA-level COVID-19 hospitalization risks were investigated using global negative binomial and local geographically weighted negative binomial models. RESULTS: COVID-19 hospitalization risks were significantly higher in ZCTAs with high diabetes hospitalization risks (p < 0.0001), COVID-19 risks (p < 0.0001), black population (p = 0.0416), and populations with some college education (p = 0.0005). The associations between COVID-19 hospitalization risks and the first three predictors varied by geographic location. CONCLUSIONS: There is evidence of geographic disparities in COVID-19 hospitalization risks that are driven by differences in socioeconomic, demographic and health-related factors. The impacts of these factors vary by geographical location implying that a 'one-size-fits-all' approach may not be appropriate for management and control. Using both global and local models leads to a better understanding of geographic disparities. These findings are useful for informing health planning to identify geographic areas likely to have high numbers of individuals needing hospitalization as well as guiding vaccination efforts.


Subject(s)
COVID-19 , Hospitalization , Humans , Missouri/epidemiology , Models, Statistical , SARS-CoV-2
4.
Epidemics ; 37: 100524, 2021 12.
Article in English | MEDLINE | ID: covidwho-1574277

ABSTRACT

Nonpharmaceutical interventions for minimizing indoor SARS-CoV-2 transmission continue to be critical tools for protecting susceptible individuals from infection, even as effective vaccines are produced and distributed globally. We developed a spatially-explicit agent-based model for simulating indoor respiratory pathogen transmission during discrete events taking place in a single room within a sub-day time frame, and used it to compare effects of four interventions on reducing secondary SARS-CoV-2 attack rates during a superspreading event by simulating a well-known case study. We found that preventing people from moving within the simulated room and efficacious mask usage appear to have the greatest effects on reducing infection risk, but multiple concurrent interventions are required to minimize the proportion of susceptible individuals infected. Social distancing had little effect on reducing transmission if individuals were randomly relocated within the room to simulate activity-related movements during the gathering. Furthermore, our results suggest that there is potential for ventilation airflow to expose susceptible people to aerosolized pathogens even if they are relatively far from infectious individuals. Maximizing the vertical aerosol removal rate is paramount to successful transmission-risk reduction when using ventilation systems as intervention tools.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL